1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

pub mod table_provider_factory;

use std::any::Any;
use std::sync::Arc;

use async_trait::async_trait;
use datafusion::arrow::datatypes::SchemaRef as ArrowSchemaRef;
use datafusion::catalog::Session;
use datafusion::datasource::{TableProvider, TableType};
use datafusion::error::Result as DFResult;
use datafusion::logical_expr::{Expr, TableProviderFilterPushDown};
use datafusion::physical_plan::ExecutionPlan;
use iceberg::arrow::schema_to_arrow_schema;
use iceberg::table::Table;
use iceberg::{Catalog, Error, ErrorKind, NamespaceIdent, Result, TableIdent};

use crate::physical_plan::scan::IcebergTableScan;

/// Represents a [`TableProvider`] for the Iceberg [`Catalog`],
/// managing access to a [`Table`].
#[derive(Debug, Clone)]
pub struct IcebergTableProvider {
    /// A table in the catalog.
    table: Table,
    /// Table snapshot id that will be queried via this provider.
    snapshot_id: Option<i64>,
    /// A reference-counted arrow `Schema`.
    schema: ArrowSchemaRef,
}

impl IcebergTableProvider {
    pub(crate) fn new(table: Table, schema: ArrowSchemaRef) -> Self {
        IcebergTableProvider {
            table,
            snapshot_id: None,
            schema,
        }
    }
    /// Asynchronously tries to construct a new [`IcebergTableProvider`]
    /// using the given client and table name to fetch an actual [`Table`]
    /// in the provided namespace.
    pub(crate) async fn try_new(
        client: Arc<dyn Catalog>,
        namespace: NamespaceIdent,
        name: impl Into<String>,
    ) -> Result<Self> {
        let ident = TableIdent::new(namespace, name.into());
        let table = client.load_table(&ident).await?;

        let schema = Arc::new(schema_to_arrow_schema(table.metadata().current_schema())?);

        Ok(IcebergTableProvider {
            table,
            snapshot_id: None,
            schema,
        })
    }

    /// Asynchronously tries to construct a new [`IcebergTableProvider`]
    /// using the given table. Can be used to create a table provider from an existing table regardless of the catalog implementation.
    pub async fn try_new_from_table(table: Table) -> Result<Self> {
        let schema = Arc::new(schema_to_arrow_schema(table.metadata().current_schema())?);
        Ok(IcebergTableProvider {
            table,
            snapshot_id: None,
            schema,
        })
    }

    /// Asynchronously tries to construct a new [`IcebergTableProvider`]
    /// using a specific snapshot of the given table. Can be used to create a table provider from an existing table regardless of the catalog implementation.
    pub async fn try_new_from_table_snapshot(table: Table, snapshot_id: i64) -> Result<Self> {
        let snapshot = table
            .metadata()
            .snapshot_by_id(snapshot_id)
            .ok_or_else(|| {
                Error::new(
                    ErrorKind::Unexpected,
                    format!(
                        "snapshot id {snapshot_id} not found in table {}",
                        table.identifier().name()
                    ),
                )
            })?;
        let schema = snapshot.schema(table.metadata())?;
        let schema = Arc::new(schema_to_arrow_schema(&schema)?);
        Ok(IcebergTableProvider {
            table,
            snapshot_id: Some(snapshot_id),
            schema,
        })
    }
}

#[async_trait]
impl TableProvider for IcebergTableProvider {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn schema(&self) -> ArrowSchemaRef {
        self.schema.clone()
    }

    fn table_type(&self) -> TableType {
        TableType::Base
    }

    async fn scan(
        &self,
        _state: &dyn Session,
        projection: Option<&Vec<usize>>,
        filters: &[Expr],
        _limit: Option<usize>,
    ) -> DFResult<Arc<dyn ExecutionPlan>> {
        Ok(Arc::new(IcebergTableScan::new(
            self.table.clone(),
            self.snapshot_id,
            self.schema.clone(),
            projection,
            filters,
        )))
    }

    fn supports_filters_pushdown(
        &self,
        filters: &[&Expr],
    ) -> std::result::Result<Vec<TableProviderFilterPushDown>, datafusion::error::DataFusionError>
    {
        // Push down all filters, as a single source of truth, the scanner will drop the filters which couldn't be push down
        Ok(vec![TableProviderFilterPushDown::Inexact; filters.len()])
    }
}

#[cfg(test)]
mod tests {
    use datafusion::common::Column;
    use datafusion::prelude::SessionContext;
    use iceberg::io::FileIO;
    use iceberg::table::{StaticTable, Table};
    use iceberg::TableIdent;

    use super::*;

    async fn get_test_table_from_metadata_file() -> Table {
        let metadata_file_name = "TableMetadataV2Valid.json";
        let metadata_file_path = format!(
            "{}/tests/test_data/{}",
            env!("CARGO_MANIFEST_DIR"),
            metadata_file_name
        );
        let file_io = FileIO::from_path(&metadata_file_path)
            .unwrap()
            .build()
            .unwrap();
        let static_identifier = TableIdent::from_strs(["static_ns", "static_table"]).unwrap();
        let static_table =
            StaticTable::from_metadata_file(&metadata_file_path, static_identifier, file_io)
                .await
                .unwrap();
        static_table.into_table()
    }

    #[tokio::test]
    async fn test_try_new_from_table() {
        let table = get_test_table_from_metadata_file().await;
        let table_provider = IcebergTableProvider::try_new_from_table(table.clone())
            .await
            .unwrap();
        let ctx = SessionContext::new();
        ctx.register_table("mytable", Arc::new(table_provider))
            .unwrap();
        let df = ctx.sql("SELECT * FROM mytable").await.unwrap();
        let df_schema = df.schema();
        let df_columns = df_schema.fields();
        assert_eq!(df_columns.len(), 3);
        let x_column = df_columns.first().unwrap();
        let column_data = format!(
            "{:?}:{:?}",
            x_column.name(),
            x_column.data_type().to_string()
        );
        assert_eq!(column_data, "\"x\":\"Int64\"");
        let has_column = df_schema.has_column(&Column::from_name("z"));
        assert!(has_column);
    }

    #[tokio::test]
    async fn test_try_new_from_table_snapshot() {
        let table = get_test_table_from_metadata_file().await;
        let snapshot_id = table.metadata().snapshots().next().unwrap().snapshot_id();
        let table_provider =
            IcebergTableProvider::try_new_from_table_snapshot(table.clone(), snapshot_id)
                .await
                .unwrap();
        let ctx = SessionContext::new();
        ctx.register_table("mytable", Arc::new(table_provider))
            .unwrap();
        let df = ctx.sql("SELECT * FROM mytable").await.unwrap();
        let df_schema = df.schema();
        let df_columns = df_schema.fields();
        assert_eq!(df_columns.len(), 3);
        let x_column = df_columns.first().unwrap();
        let column_data = format!(
            "{:?}:{:?}",
            x_column.name(),
            x_column.data_type().to_string()
        );
        assert_eq!(column_data, "\"x\":\"Int64\"");
        let has_column = df_schema.has_column(&Column::from_name("z"));
        assert!(has_column);
    }

    #[tokio::test]
    async fn test_physical_input_schema_consistent_with_logical_input_schema() {
        let table = get_test_table_from_metadata_file().await;
        let table_provider = IcebergTableProvider::try_new_from_table(table.clone())
            .await
            .unwrap();
        let ctx = SessionContext::new();
        ctx.register_table("mytable", Arc::new(table_provider))
            .unwrap();
        let df = ctx.sql("SELECT count(*) FROM mytable").await.unwrap();
        let physical_plan = df.create_physical_plan().await;
        assert!(physical_plan.is_ok())
    }
}